
Physical properties of light

Physical properties of light

Light consists of photons — “particles” with no mass which

travel at the speed of light.

Physical properties of light

Light consists of photons — “particles” with no mass which

travel at the speed of light. They have energy, and one measure

of this energy is the “wavelength” of the light.

Physical properties of light

Light consists of photons — “particles” with no mass which

travel at the speed of light. They have energy, and one measure

of this energy is the “wavelength” of the light.

To a very good approximation, light travels in straight lines, and

behaves much like a particle.

Physical properties of light

Light consists of photons — “particles” with no mass which

travel at the speed of light. They have energy, and one measure

of this energy is the “wavelength” of the light.

To a very good approximation, light travels in straight lines, and

behaves much like a particle. (In some circumstances, light has

wave properties — interference and diffraction effects — but

these are rarely important in computer graphics.)

Physical properties of light

Light consists of photons — “particles” with no mass which

travel at the speed of light. They have energy, and one measure

of this energy is the “wavelength” of the light.

To a very good approximation, light travels in straight lines, and

behaves much like a particle. (In some circumstances, light has

wave properties — interference and diffraction effects — but

these are rarely important in computer graphics.)

Light may be “bent” or refracted in transparent substances, and

the degree of bending, or refraction, depends upon a quantity

called the refractive index.

Physical properties of light

Light consists of photons — “particles” with no mass which

travel at the speed of light. They have energy, and one measure

of this energy is the “wavelength” of the light.

To a very good approximation, light travels in straight lines, and

behaves much like a particle. (In some circumstances, light has

wave properties — interference and diffraction effects — but

these are rarely important in computer graphics.)

Light may be “bent” or refracted in transparent substances, and

the degree of bending, or refraction, depends upon a quantity

called the refractive index.

When light is incident on a shiny, flat surface, it is reflected.

Physical properties of light

Light consists of photons — “particles” with no mass which

travel at the speed of light. They have energy, and one measure

of this energy is the “wavelength” of the light.

To a very good approximation, light travels in straight lines, and

behaves much like a particle. (In some circumstances, light has

wave properties — interference and diffraction effects — but

these are rarely important in computer graphics.)

Light may be “bent” or refracted in transparent substances, and

the degree of bending, or refraction, depends upon a quantity

called the refractive index.

When light is incident on a shiny, flat surface, it is reflected.

The reflected light leaves the surface at an angle such that the

angle between the incident light and a normal to the surface is

equal to the same angle for the reflected light.

Physical properties of light

Light consists of photons — “particles” with no mass which

travel at the speed of light. They have energy, and one measure

of this energy is the “wavelength” of the light.

To a very good approximation, light travels in straight lines, and

behaves much like a particle. (In some circumstances, light has

wave properties — interference and diffraction effects — but

these are rarely important in computer graphics.)

Light may be “bent” or refracted in transparent substances, and

the degree of bending, or refraction, depends upon a quantity

called the refractive index.

When light is incident on a shiny, flat surface, it is reflected.

The reflected light leaves the surface at an angle such that the

angle between the incident light and a normal to the surface is

equal to the same angle for the reflected light.

incident light

normal

incident light reflected light

refracted light

Physical properties of light

Light consists of photons — “particles” with no mass which

travel at the speed of light. They have energy, and one measure

of this energy is the “wavelength” of the light.

To a very good approximation, light travels in straight lines, and

behaves much like a particle. (In some circumstances, light has

wave properties — interference and diffraction effects — but

these are rarely important in computer graphics.)

Light may be “bent” or refracted in transparent substances, and

the degree of bending, or refraction, depends upon a quantity

called the refractive index.

When light is incident on a shiny, flat surface, it is reflected.

The reflected light leaves the surface at an angle such that the

angle between the incident light and a normal to the surface is

equal to the same angle for the reflected light.

incident light

normal

incident light reflected light

refracted light

1

Physical properties of surfaces

Surfaces have different characteristics with respect to their inter-

action with light.

Physical properties of surfaces

Surfaces have different characteristics with respect to their inter-

action with light. Some surfaces are “shiny” and reflect most

of the light incident on the surface.

Physical properties of surfaces

Surfaces have different characteristics with respect to their inter-

action with light. Some surfaces are “shiny” and reflect most

of the light incident on the surface. Others are dull and reflect

little light at all.

Physical properties of surfaces

Surfaces have different characteristics with respect to their inter-

action with light. Some surfaces are “shiny” and reflect most

of the light incident on the surface. Others are dull and reflect

little light at all.

Surfaces have “color” — the color comes from the light incident

on the surface, which may reflect some spectral components,

and absorb others.

Physical properties of surfaces

Surfaces have different characteristics with respect to their inter-

action with light. Some surfaces are “shiny” and reflect most

of the light incident on the surface. Others are dull and reflect

little light at all.

Surfaces have “color” — the color comes from the light incident

on the surface, which may reflect some spectral components,

and absorb others. A red painted cube reflects red light, but

absorbs green and blue light.

Physical properties of surfaces

Surfaces have different characteristics with respect to their inter-

action with light. Some surfaces are “shiny” and reflect most

of the light incident on the surface. Others are dull and reflect

little light at all.

Surfaces have “color” — the color comes from the light incident

on the surface, which may reflect some spectral components,

and absorb others. A red painted cube reflects red light, but

absorbs green and blue light. If illuminated by pure green or

blue light, the cube would appear black.

Physical properties of surfaces

Surfaces have different characteristics with respect to their inter-

action with light. Some surfaces are “shiny” and reflect most

of the light incident on the surface. Others are dull and reflect

little light at all.

Surfaces have “color” — the color comes from the light incident

on the surface, which may reflect some spectral components,

and absorb others. A red painted cube reflects red light, but

absorbs green and blue light. If illuminated by pure green or

blue light, the cube would appear black.

Some surfaces, like a CRT screen, for example, emit their own

light, in varying colors and intensities.

Physical properties of surfaces

Surfaces have different characteristics with respect to their inter-

action with light. Some surfaces are “shiny” and reflect most

of the light incident on the surface. Others are dull and reflect

little light at all.

Surfaces have “color” — the color comes from the light incident

on the surface, which may reflect some spectral components,

and absorb others. A red painted cube reflects red light, but

absorbs green and blue light. If illuminated by pure green or

blue light, the cube would appear black.

Some surfaces, like a CRT screen, for example, emit their own

light, in varying colors and intensities.

Characteristics like “roughness” are also important in determin-

ing the interaction between light and a surface.

Physical properties of surfaces

Surfaces have different characteristics with respect to their inter-

action with light. Some surfaces are “shiny” and reflect most

of the light incident on the surface. Others are dull and reflect

little light at all.

Surfaces have “color” — the color comes from the light incident

on the surface, which may reflect some spectral components,

and absorb others. A red painted cube reflects red light, but

absorbs green and blue light. If illuminated by pure green or

blue light, the cube would appear black.

Some surfaces, like a CRT screen, for example, emit their own

light, in varying colors and intensities.

Characteristics like “roughness” are also important in determin-

ing the interaction between light and a surface. Also, some ma-

terials can be transparent and this transparency may be wave-

length dependent (a red plastic screen transmits only red light,

it absorbs the rest).

Physical properties of surfaces

Surfaces have different characteristics with respect to their inter-

action with light. Some surfaces are “shiny” and reflect most

of the light incident on the surface. Others are dull and reflect

little light at all.

Surfaces have “color” — the color comes from the light incident

on the surface, which may reflect some spectral components,

and absorb others. A red painted cube reflects red light, but

absorbs green and blue light. If illuminated by pure green or

blue light, the cube would appear black.

Some surfaces, like a CRT screen, for example, emit their own

light, in varying colors and intensities.

Characteristics like “roughness” are also important in determin-

ing the interaction between light and a surface. Also, some ma-

terials can be transparent and this transparency may be wave-

length dependent (a red plastic screen transmits only red light,

it absorbs the rest).

2

Illumination

Illumination

Indirect light which has been scattered by many sources is

known as ambient light.

Illumination

Indirect light which has been scattered by many sources is

known as ambient light. You can think of ambient light as

background light.

Illumination

Indirect light which has been scattered by many sources is

known as ambient light. You can think of ambient light as

background light. When ambient light interacts with a sur-

face, it is scattered in all directions.

Illumination

Indirect light which has been scattered by many sources is

known as ambient light. You can think of ambient light as

background light. When ambient light interacts with a sur-

face, it is scattered in all directions.

Light which is strongly directional (e.g. a laser beam) is said

to be specular.

Illumination

Indirect light which has been scattered by many sources is

known as ambient light. You can think of ambient light as

background light. When ambient light interacts with a sur-

face, it is scattered in all directions.

Light which is strongly directional (e.g. a laser beam) is said

to be specular. When interacting with a shiny surface, most

of this light is reflected as from a mirror.

Illumination

Indirect light which has been scattered by many sources is

known as ambient light. You can think of ambient light as

background light. When ambient light interacts with a sur-

face, it is scattered in all directions.

Light which is strongly directional (e.g. a laser beam) is said

to be specular. When interacting with a shiny surface, most

of this light is reflected as from a mirror. (Specularity is really

a material property, but in graphics the term is also applied to

light sources.)

Illumination

Indirect light which has been scattered by many sources is

known as ambient light. You can think of ambient light as

background light. When ambient light interacts with a sur-

face, it is scattered in all directions.

Light which is strongly directional (e.g. a laser beam) is said

to be specular. When interacting with a shiny surface, most

of this light is reflected as from a mirror. (Specularity is really

a material property, but in graphics the term is also applied to

light sources.)

The diffuse component of light comes from one direction, so

it is brighter if it shines directly on a surface than if it meets

the surface at an angle.

Illumination

Indirect light which has been scattered by many sources is

known as ambient light. You can think of ambient light as

background light. When ambient light interacts with a sur-

face, it is scattered in all directions.

Light which is strongly directional (e.g. a laser beam) is said

to be specular. When interacting with a shiny surface, most

of this light is reflected as from a mirror. (Specularity is really

a material property, but in graphics the term is also applied to

light sources.)

The diffuse component of light comes from one direction, so

it is brighter if it shines directly on a surface than if it meets

the surface at an angle. Unlike specular light, diffuse light is

scattered in all directions after striking a surface.

Illumination

Indirect light which has been scattered by many sources is

known as ambient light. You can think of ambient light as

background light. When ambient light interacts with a sur-

face, it is scattered in all directions.

Light which is strongly directional (e.g. a laser beam) is said

to be specular. When interacting with a shiny surface, most

of this light is reflected as from a mirror. (Specularity is really

a material property, but in graphics the term is also applied to

light sources.)

The diffuse component of light comes from one direction, so

it is brighter if it shines directly on a surface than if it meets

the surface at an angle. Unlike specular light, diffuse light is

scattered in all directions after striking a surface.

3

SpecularDiffuseAmbient

SpecularDiffuseAmbient

ambient — rays come from and scatter into all directions

SpecularDiffuseAmbient

ambient — rays come from and scatter into all directions

diffuse — rays come from one direction, scatter into all directions

SpecularDiffuseAmbient

ambient — rays come from and scatter into all directions

diffuse — rays come from one direction, scatter into all directions

specular — rays come from one direction, reflect into one direction

SpecularDiffuseAmbient

ambient — rays come from and scatter into all directions

diffuse — rays come from one direction, scatter into all directions

specular — rays come from one direction, reflect into one direction

For specular light, the normal to the surface is used to calculate

the direction into which the reflected light is scattered.

SpecularDiffuseAmbient

ambient — rays come from and scatter into all directions

diffuse — rays come from one direction, scatter into all directions

specular — rays come from one direction, reflect into one direction

For specular light, the normal to the surface is used to calculate

the direction into which the reflected light is scattered. The

normal is also used to determine the degree of diffuse lighting.

SpecularDiffuseAmbient

ambient — rays come from and scatter into all directions

diffuse — rays come from one direction, scatter into all directions

specular — rays come from one direction, reflect into one direction

For specular light, the normal to the surface is used to calculate

the direction into which the reflected light is scattered. The

normal is also used to determine the degree of diffuse lighting.

Thus, normals must be defined in order to use lighting.

SpecularDiffuseAmbient

ambient — rays come from and scatter into all directions

diffuse — rays come from one direction, scatter into all directions

specular — rays come from one direction, reflect into one direction

For specular light, the normal to the surface is used to calculate

the direction into which the reflected light is scattered. The

normal is also used to determine the degree of diffuse lighting.

Thus, normals must be defined in order to use lighting.

Light also has the property that it reduces in intensity with dis-

tance from the source.

SpecularDiffuseAmbient

ambient — rays come from and scatter into all directions

diffuse — rays come from one direction, scatter into all directions

specular — rays come from one direction, reflect into one direction

For specular light, the normal to the surface is used to calculate

the direction into which the reflected light is scattered. The

normal is also used to determine the degree of diffuse lighting.

Thus, normals must be defined in order to use lighting.

Light also has the property that it reduces in intensity with dis-

tance from the source. In particular, light from a point source

decreased in intensity proportional to the square of the distance

from the source.

SpecularDiffuseAmbient

ambient — rays come from and scatter into all directions

diffuse — rays come from one direction, scatter into all directions

specular — rays come from one direction, reflect into one direction

For specular light, the normal to the surface is used to calculate

the direction into which the reflected light is scattered. The

normal is also used to determine the degree of diffuse lighting.

Thus, normals must be defined in order to use lighting.

Light also has the property that it reduces in intensity with dis-

tance from the source. In particular, light from a point source

decreased in intensity proportional to the square of the distance

from the source. For a long linear light source, the intensity

decreases proportional to the distance from the source.

SpecularDiffuseAmbient

ambient — rays come from and scatter into all directions

diffuse — rays come from one direction, scatter into all directions

specular — rays come from one direction, reflect into one direction

For specular light, the normal to the surface is used to calculate

the direction into which the reflected light is scattered. The

normal is also used to determine the degree of diffuse lighting.

Thus, normals must be defined in order to use lighting.

Light also has the property that it reduces in intensity with dis-

tance from the source. In particular, light from a point source

decreased in intensity proportional to the square of the distance

from the source. For a long linear light source, the intensity

decreases proportional to the distance from the source.

Other light sources (spotlights, and other lights containing re-

flecting or lens elements) may have more complex functions.

SpecularDiffuseAmbient

ambient — rays come from and scatter into all directions

diffuse — rays come from one direction, scatter into all directions

specular — rays come from one direction, reflect into one direction

For specular light, the normal to the surface is used to calculate

the direction into which the reflected light is scattered. The

normal is also used to determine the degree of diffuse lighting.

Thus, normals must be defined in order to use lighting.

Light also has the property that it reduces in intensity with dis-

tance from the source. In particular, light from a point source

decreased in intensity proportional to the square of the distance

from the source. For a long linear light source, the intensity

decreases proportional to the distance from the source.

Other light sources (spotlights, and other lights containing re-

flecting or lens elements) may have more complex functions.

4

Rendering lit scenes realistically

We require a simple model for lighting which allows us to model

both light sources and surface properties efficiently.

Rendering lit scenes realistically

We require a simple model for lighting which allows us to model

both light sources and surface properties efficiently.

Ideally, we would assign the appropriate physical properties to

each surface and calculate the surface interactions of every visi-

ble ray of light from the viewer’s eye position back to the source.

Rendering lit scenes realistically

We require a simple model for lighting which allows us to model

both light sources and surface properties efficiently.

Ideally, we would assign the appropriate physical properties to

each surface and calculate the surface interactions of every visi-

ble ray of light from the viewer’s eye position back to the source.

This would produce a very realistic image (if all properties were

well modelled), but would be very computationally expensive.

Rendering lit scenes realistically

We require a simple model for lighting which allows us to model

both light sources and surface properties efficiently.

Ideally, we would assign the appropriate physical properties to

each surface and calculate the surface interactions of every visi-

ble ray of light from the viewer’s eye position back to the source.

This would produce a very realistic image (if all properties were

well modelled), but would be very computationally expensive.

This method is known as ray tracing.

Rendering lit scenes realistically

We require a simple model for lighting which allows us to model

both light sources and surface properties efficiently.

Ideally, we would assign the appropriate physical properties to

each surface and calculate the surface interactions of every visi-

ble ray of light from the viewer’s eye position back to the source.

This would produce a very realistic image (if all properties were

well modelled), but would be very computationally expensive.

This method is known as ray tracing. It can produce very

realistic images, including refraction, shadows and multiple re-

flections, but at very high computational cost.

Rendering lit scenes realistically

We require a simple model for lighting which allows us to model

both light sources and surface properties efficiently.

Ideally, we would assign the appropriate physical properties to

each surface and calculate the surface interactions of every visi-

ble ray of light from the viewer’s eye position back to the source.

This would produce a very realistic image (if all properties were

well modelled), but would be very computationally expensive.

This method is known as ray tracing. It can produce very

realistic images, including refraction, shadows and multiple re-

flections, but at very high computational cost.

OpenGL uses a relatively simple model for lighting.

Rendering lit scenes realistically

We require a simple model for lighting which allows us to model

both light sources and surface properties efficiently.

Ideally, we would assign the appropriate physical properties to

each surface and calculate the surface interactions of every visi-

ble ray of light from the viewer’s eye position back to the source.

This would produce a very realistic image (if all properties were

well modelled), but would be very computationally expensive.

This method is known as ray tracing. It can produce very

realistic images, including refraction, shadows and multiple re-

flections, but at very high computational cost.

OpenGL uses a relatively simple model for lighting. It defines

a set of properties for materials, a set of light sources, and

a lighting model.

Rendering lit scenes realistically

We require a simple model for lighting which allows us to model

both light sources and surface properties efficiently.

Ideally, we would assign the appropriate physical properties to

each surface and calculate the surface interactions of every visi-

ble ray of light from the viewer’s eye position back to the source.

This would produce a very realistic image (if all properties were

well modelled), but would be very computationally expensive.

This method is known as ray tracing. It can produce very

realistic images, including refraction, shadows and multiple re-

flections, but at very high computational cost.

OpenGL uses a relatively simple model for lighting. It defines

a set of properties for materials, a set of light sources, and

a lighting model. This model cannot account for secondary

effects like shadows or reflected illumination, but it produces

reasonable illumination effects efficiently.

Rendering lit scenes realistically

We require a simple model for lighting which allows us to model

both light sources and surface properties efficiently.

Ideally, we would assign the appropriate physical properties to

each surface and calculate the surface interactions of every visi-

ble ray of light from the viewer’s eye position back to the source.

This would produce a very realistic image (if all properties were

well modelled), but would be very computationally expensive.

This method is known as ray tracing. It can produce very

realistic images, including refraction, shadows and multiple re-

flections, but at very high computational cost.

OpenGL uses a relatively simple model for lighting. It defines

a set of properties for materials, a set of light sources, and

a lighting model. This model cannot account for secondary

effects like shadows or reflected illumination, but it produces

reasonable illumination effects efficiently.

5

Lighting models in OpenGL

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

• Define normals at each vertex for every object.

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

• Define normals at each vertex for every object. (More on

this soon)

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

• Define normals at each vertex for every object. (More on

this soon)

• Create and position one or more light sources with glLight*().

(OpenGL supports at least 8 light sources).

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

• Define normals at each vertex for every object. (More on

this soon)

• Create and position one or more light sources with glLight*().

(OpenGL supports at least 8 light sources).

• Select a lighting model; with glLightModel*(). This de-

fines the level of (global) ambient light, and the effective

location of the viewpoint (for the lighting calculations).

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

• Define normals at each vertex for every object. (More on

this soon)

• Create and position one or more light sources with glLight*().

(OpenGL supports at least 8 light sources).

• Select a lighting model; with glLightModel*(). This de-

fines the level of (global) ambient light, and the effective

location of the viewpoint (for the lighting calculations).

• Define the material properties for each object in the scene

with glMaterial*().

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

• Define normals at each vertex for every object. (More on

this soon)

• Create and position one or more light sources with glLight*().

(OpenGL supports at least 8 light sources).

• Select a lighting model; with glLightModel*(). This de-

fines the level of (global) ambient light, and the effective

location of the viewpoint (for the lighting calculations).

• Define the material properties for each object in the scene

with glMaterial*().

void glLight{if}(GLenum light, GLenum pname,

TYPE param);

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

• Define normals at each vertex for every object. (More on

this soon)

• Create and position one or more light sources with glLight*().

(OpenGL supports at least 8 light sources).

• Select a lighting model; with glLightModel*(). This de-

fines the level of (global) ambient light, and the effective

location of the viewpoint (for the lighting calculations).

• Define the material properties for each object in the scene

with glMaterial*().

void glLight{if}(GLenum light, GLenum pname,

TYPE param);

void glLight{if}v(GLenum light, GLenum pname,

TYPE *param);

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

• Define normals at each vertex for every object. (More on

this soon)

• Create and position one or more light sources with glLight*().

(OpenGL supports at least 8 light sources).

• Select a lighting model; with glLightModel*(). This de-

fines the level of (global) ambient light, and the effective

location of the viewpoint (for the lighting calculations).

• Define the material properties for each object in the scene

with glMaterial*().

void glLight{if}(GLenum light, GLenum pname,

TYPE param);

void glLight{if}v(GLenum light, GLenum pname,

TYPE *param);

create the light specified by GL_LIGHT0, GL_LIGHT1, . . . with

properties given by pname;

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

• Define normals at each vertex for every object. (More on

this soon)

• Create and position one or more light sources with glLight*().

(OpenGL supports at least 8 light sources).

• Select a lighting model; with glLightModel*(). This de-

fines the level of (global) ambient light, and the effective

location of the viewpoint (for the lighting calculations).

• Define the material properties for each object in the scene

with glMaterial*().

void glLight{if}(GLenum light, GLenum pname,

TYPE param);

void glLight{if}v(GLenum light, GLenum pname,

TYPE *param);

create the light specified by GL_LIGHT0, GL_LIGHT1, . . . with

properties given by pname; param specifies the set of param-

eters for the properties pname.

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

• Define normals at each vertex for every object. (More on

this soon)

• Create and position one or more light sources with glLight*().

(OpenGL supports at least 8 light sources).

• Select a lighting model; with glLightModel*(). This de-

fines the level of (global) ambient light, and the effective

location of the viewpoint (for the lighting calculations).

• Define the material properties for each object in the scene

with glMaterial*().

void glLight{if}(GLenum light, GLenum pname,

TYPE param);

void glLight{if}v(GLenum light, GLenum pname,

TYPE *param);

create the light specified by GL_LIGHT0, GL_LIGHT1, . . . with

properties given by pname; param specifies the set of param-

eters for the properties pname. The vector version (suffix ‘v’)

is used to specify an array of parameters.

Lighting models in OpenGL

In order to add lighting to a scene, the following steps are

required:

• Define normals at each vertex for every object. (More on

this soon)

• Create and position one or more light sources with glLight*().

(OpenGL supports at least 8 light sources).

• Select a lighting model; with glLightModel*(). This de-

fines the level of (global) ambient light, and the effective

location of the viewpoint (for the lighting calculations).

• Define the material properties for each object in the scene

with glMaterial*().

void glLight{if}(GLenum light, GLenum pname,

TYPE param);

void glLight{if}v(GLenum light, GLenum pname,

TYPE *param);

create the light specified by GL_LIGHT0, GL_LIGHT1, . . . with

properties given by pname; param specifies the set of param-

eters for the properties pname. The vector version (suffix ‘v’)

is used to specify an array of parameters.

6

Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.

Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.

The default values for GL_DIFFUSE and GL_SPECULAR are for

GL_LIGHT0 only.

Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.

The default values for GL_DIFFUSE and GL_SPECULAR are for

GL_LIGHT0 only. Other lights default to black (0.0, 0.0, 0.0, 1.0).

Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.

The default values for GL_DIFFUSE and GL_SPECULAR are for

GL_LIGHT0 only. Other lights default to black (0.0, 0.0, 0.0, 1.0).

Light position: GL_POSITION

Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.

The default values for GL_DIFFUSE and GL_SPECULAR are for

GL_LIGHT0 only. Other lights default to black (0.0, 0.0, 0.0, 1.0).

Light position: GL_POSITION

The fourth value specified for GL_POSITION controls whether

the light is directional or positional.

Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.

The default values for GL_DIFFUSE and GL_SPECULAR are for

GL_LIGHT0 only. Other lights default to black (0.0, 0.0, 0.0, 1.0).

Light position: GL_POSITION

The fourth value specified for GL_POSITION controls whether

the light is directional or positional. A directional light is in-

finitely far away, such that the rays of light it emanates are

7

parallel (e.g. like the rays of light from the sun striking a small

area on Earth).

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional.

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance.

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance. That is, it attenuates.

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance. That is, it attenuates.

The attenuation is calculated from the expression

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance. That is, it attenuates.

The attenuation is calculated from the expression

attenuation factor =
1

kc + kld + kqd2

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance. That is, it attenuates.

The attenuation is calculated from the expression

attenuation factor =
1

kc + kld + kqd2

where d is the distance from the light source, and kc, kl, and kq

are the constant, linear, and quadratic attenuation terms.

parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance. That is, it attenuates.

The attenuation is calculated from the expression

attenuation factor =
1

kc + kld + kqd2

where d is the distance from the light source, and kc, kl, and kq

are the constant, linear, and quadratic attenuation terms.

8

First example

First example

The following simple program light.c shows a lighted sphere:

First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{

First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat mat_shininess[] = { 50.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

GLfloat white_light_[] = { 1.0, 1.0, 1.0, 0.0 };

First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat mat_shininess[] = { 50.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

GLfloat white_light_[] = { 1.0, 1.0, 1.0, 0.0 };

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat mat_shininess[] = { 50.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

GLfloat white_light_[] = { 1.0, 1.0, 1.0, 0.0 };

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);

First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat mat_shininess[] = { 50.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

GLfloat white_light_[] = { 1.0, 1.0, 1.0, 0.0 };

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glLightfv(GL_LIGHT0, GL_DIFFUSE, white_light);

glLightfv(GL_LIGHT0, GL_SPECULAR, white_light);

First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat mat_shininess[] = { 50.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

GLfloat white_light_[] = { 1.0, 1.0, 1.0, 0.0 };

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glLightfv(GL_LIGHT0, GL_DIFFUSE, white_light);

glLightfv(GL_LIGHT0, GL_SPECULAR, white_light);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glEnable(GL_DEPTH_TEST);

}

9

void display(void)

{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glutSolidSphere (1.0, 20, 16);

glFlush ();

}

void display(void)

{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glutSolidSphere (1.0, 20, 16);

glFlush ();

}

Second example

void display(void)

{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glutSolidSphere (1.0, 20, 16);

glFlush ();

}

Second example

This example, movelight.c, illustrates how the position of a

light is transformed by the MODELVIEW matrix:

void display(void)

{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glutSolidSphere (1.0, 20, 16);

glFlush ();

}

Second example

This example, movelight.c, illustrates how the position of a

light is transformed by the MODELVIEW matrix:

void init(void)

{

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glEnable(GL_DEPTH_TEST);

}

void display(void)

{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glutSolidSphere (1.0, 20, 16);

glFlush ();

}

Second example

This example, movelight.c, illustrates how the position of a

light is transformed by the MODELVIEW matrix:

void init(void)

{

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glEnable(GL_DEPTH_TEST);

}

10

void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);

void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);

glDisable (GL_LIGHTING); /* Draw an unlit wire cube at */

glColor3f (0.0, 1.0, 1.0); /* the position of the light. */

glutWireCube (0.1);

glEnable (GL_LIGHTING);

glPopMatrix ();

void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);

glDisable (GL_LIGHTING); /* Draw an unlit wire cube at */

glColor3f (0.0, 1.0, 1.0); /* the position of the light. */

glutWireCube (0.1);

glEnable (GL_LIGHTING);

glPopMatrix ();

void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);

glDisable (GL_LIGHTING); /* Draw an unlit wire cube at */

glColor3f (0.0, 1.0, 1.0); /* the position of the light. */

glutWireCube (0.1);

glEnable (GL_LIGHTING);

glPopMatrix ();

glutSolidTorus (0.275, 0.85, 8, 15);

void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);

glDisable (GL_LIGHTING); /* Draw an unlit wire cube at */

glColor3f (0.0, 1.0, 1.0); /* the position of the light. */

glutWireCube (0.1);

glEnable (GL_LIGHTING);

glPopMatrix ();

glutSolidTorus (0.275, 0.85, 8, 15);

glPopMatrix ();

glFlush ();

}

void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);

glDisable (GL_LIGHTING); /* Draw an unlit wire cube at */

glColor3f (0.0, 1.0, 1.0); /* the position of the light. */

glutWireCube (0.1);

glEnable (GL_LIGHTING);

glPopMatrix ();

glutSolidTorus (0.275, 0.85, 8, 15);

glPopMatrix ();

glFlush ();

}

11

void reshape (int w, int h)

{

glViewport (0, 0, (GLsizei) w, (GLsizei) h);

glMatrixMode (GL_PROJECTION);

glLoadIdentity();

gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

}

void reshape (int w, int h)

{

glViewport (0, 0, (GLsizei) w, (GLsizei) h);

glMatrixMode (GL_PROJECTION);

glLoadIdentity();

gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

}

void mouse(int button, int state, int x, int y) {

switch (button) {

case GLUT_LEFT_BUTTON:

if (state == GLUT_DOWN) {

spin = (spin + 30) % 360;

glutPostRedisplay();

}

break;

default:

break;

}

}

12

void keyboard(unsigned char key, int x, int y) {

switch (key) {

case 27:

exit(0);

break;

}

}

void keyboard(unsigned char key, int x, int y) {

switch (key) {

case 27:

exit(0);

break;

}

}

int main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowSize (500, 500);

glutInitWindowPosition (100, 100);

glutCreateWindow (argv[0]);

init ();

glutDisplayFunc(display);

glutReshapeFunc(reshape);

glutMouseFunc(mouse);

glutKeyboardFunc(keyboard);

glutMainLoop();

return 0;

}

13

Material properties

Material properties

The colors of light reflected by a primitive are set with the

function glMaterial*().

Material properties

The colors of light reflected by a primitive are set with the

function glMaterial*(). It has the form:

Material properties

The colors of light reflected by a primitive are set with the

function glMaterial*(). It has the form:

void glMaterial{if}(GLenum face, GLenum pname, TYPE

param);

Material properties

The colors of light reflected by a primitive are set with the

function glMaterial*(). It has the form:

void glMaterial{if}(GLenum face, GLenum pname, TYPE

param);

void glMaterial{if}v(GLenum face, GLenum pname, TYPE

*param);

Material properties

The colors of light reflected by a primitive are set with the

function glMaterial*(). It has the form:

void glMaterial{if}(GLenum face, GLenum pname, TYPE

param);

void glMaterial{if}v(GLenum face, GLenum pname, TYPE

*param);

where face can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK,

and pname and param are defined in the following table:

Material properties

The colors of light reflected by a primitive are set with the

function glMaterial*(). It has the form:

void glMaterial{if}(GLenum face, GLenum pname, TYPE

param);

void glMaterial{if}v(GLenum face, GLenum pname, TYPE

*param);

where face can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK,

and pname and param are defined in the following table:

Parameter name Default Value Meaning

GL_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient color of material

GL_DIFFUSE (0.8, 0.8, 0.8, 1.0) diffuse color of material

GL_SPECULAR (0.0, 0.0, 0.0, 1.0) specular color of material

GL_EMISSION (0.0, 0.0, 0.0, 1.0) emissive color of material

GL_SHININESS 0.0 specular exponent

Material properties

The colors of light reflected by a primitive are set with the

function glMaterial*(). It has the form:

void glMaterial{if}(GLenum face, GLenum pname, TYPE

param);

void glMaterial{if}v(GLenum face, GLenum pname, TYPE

*param);

where face can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK,

and pname and param are defined in the following table:

Parameter name Default Value Meaning

GL_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient color of material

GL_DIFFUSE (0.8, 0.8, 0.8, 1.0) diffuse color of material

GL_SPECULAR (0.0, 0.0, 0.0, 1.0) specular color of material

GL_EMISSION (0.0, 0.0, 0.0, 1.0) emissive color of material

GL_SHININESS 0.0 specular exponent

The parameter GL_EMISSION allows a body to emit light (for

modelling lamps, etc.).

Material properties

The colors of light reflected by a primitive are set with the

function glMaterial*(). It has the form:

void glMaterial{if}(GLenum face, GLenum pname, TYPE

param);

void glMaterial{if}v(GLenum face, GLenum pname, TYPE

*param);

where face can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK,

and pname and param are defined in the following table:

Parameter name Default Value Meaning

GL_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient color of material

GL_DIFFUSE (0.8, 0.8, 0.8, 1.0) diffuse color of material

GL_SPECULAR (0.0, 0.0, 0.0, 1.0) specular color of material

GL_EMISSION (0.0, 0.0, 0.0, 1.0) emissive color of material

GL_SHININESS 0.0 specular exponent

The parameter GL_EMISSION allows a body to emit light (for

modelling lamps, etc.). Light from this source does not illumi-

nate any other part of the scene.

Material properties

The colors of light reflected by a primitive are set with the

function glMaterial*(). It has the form:

void glMaterial{if}(GLenum face, GLenum pname, TYPE

param);

void glMaterial{if}v(GLenum face, GLenum pname, TYPE

*param);

where face can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK,

and pname and param are defined in the following table:

Parameter name Default Value Meaning

GL_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient color of material

GL_DIFFUSE (0.8, 0.8, 0.8, 1.0) diffuse color of material

GL_SPECULAR (0.0, 0.0, 0.0, 1.0) specular color of material

GL_EMISSION (0.0, 0.0, 0.0, 1.0) emissive color of material

GL_SHININESS 0.0 specular exponent

The parameter GL_EMISSION allows a body to emit light (for

modelling lamps, etc.). Light from this source does not illumi-

nate any other part of the scene.

The tutorial lightmaterial shows interaction between light

sources and material properties.

Material properties

The colors of light reflected by a primitive are set with the

function glMaterial*(). It has the form:

void glMaterial{if}(GLenum face, GLenum pname, TYPE

param);

void glMaterial{if}v(GLenum face, GLenum pname, TYPE

*param);

where face can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK,

and pname and param are defined in the following table:

Parameter name Default Value Meaning

GL_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient color of material

GL_DIFFUSE (0.8, 0.8, 0.8, 1.0) diffuse color of material

GL_SPECULAR (0.0, 0.0, 0.0, 1.0) specular color of material

GL_EMISSION (0.0, 0.0, 0.0, 1.0) emissive color of material

GL_SHININESS 0.0 specular exponent

The parameter GL_EMISSION allows a body to emit light (for

modelling lamps, etc.). Light from this source does not illumi-

nate any other part of the scene.

The tutorial lightmaterial shows interaction between light

sources and material properties.

14

The lighting model

The lighting model

The OpenGL lighting model has four components:

The lighting model

The OpenGL lighting model has four components:

1. The global ambient light intensity

The lighting model

The OpenGL lighting model has four components:

1. The global ambient light intensity

2. The viewpoint position (local or at infinity)

The lighting model

The OpenGL lighting model has four components:

1. The global ambient light intensity

2. The viewpoint position (local or at infinity)

3. Whether front and back surfaces should have different light-

ing calculations

The lighting model

The OpenGL lighting model has four components:

1. The global ambient light intensity

2. The viewpoint position (local or at infinity)

3. Whether front and back surfaces should have different light-

ing calculations

4. Whether or not the specular color should be separated from

ambient and diffuse colors and applied after texturing.

The lighting model

The OpenGL lighting model has four components:

1. The global ambient light intensity

2. The viewpoint position (local or at infinity)

3. Whether front and back surfaces should have different light-

ing calculations

4. Whether or not the specular color should be separated from

ambient and diffuse colors and applied after texturing.

All those properties can be set individually with the function

glLightModel*().

The lighting model

The OpenGL lighting model has four components:

1. The global ambient light intensity

2. The viewpoint position (local or at infinity)

3. Whether front and back surfaces should have different light-

ing calculations

4. Whether or not the specular color should be separated from

ambient and diffuse colors and applied after texturing.

All those properties can be set individually with the function

glLightModel*().

void glLightModel{if}(GLenum pname, TYPE param);

The lighting model

The OpenGL lighting model has four components:

1. The global ambient light intensity

2. The viewpoint position (local or at infinity)

3. Whether front and back surfaces should have different light-

ing calculations

4. Whether or not the specular color should be separated from

ambient and diffuse colors and applied after texturing.

All those properties can be set individually with the function

glLightModel*().

void glLightModel{if}(GLenum pname, TYPE param);

void glLightModel{if}v(GLenum pname, TYPE *param);

The lighting model

The OpenGL lighting model has four components:

1. The global ambient light intensity

2. The viewpoint position (local or at infinity)

3. Whether front and back surfaces should have different light-

ing calculations

4. Whether or not the specular color should be separated from

ambient and diffuse colors and applied after texturing.

All those properties can be set individually with the function

glLightModel*().

void glLightModel{if}(GLenum pname, TYPE param);

void glLightModel{if}v(GLenum pname, TYPE *param);

Again, pname specifies the property; param specifies the set of

parameters for the property pname.

The lighting model

The OpenGL lighting model has four components:

1. The global ambient light intensity

2. The viewpoint position (local or at infinity)

3. Whether front and back surfaces should have different light-

ing calculations

4. Whether or not the specular color should be separated from

ambient and diffuse colors and applied after texturing.

All those properties can be set individually with the function

glLightModel*().

void glLightModel{if}(GLenum pname, TYPE param);

void glLightModel{if}v(GLenum pname, TYPE *param);

Again, pname specifies the property; param specifies the set of

parameters for the property pname.

In the following, GL_LIGHT_MODEL precedes the parameter name:

The lighting model

The OpenGL lighting model has four components:

1. The global ambient light intensity

2. The viewpoint position (local or at infinity)

3. Whether front and back surfaces should have different light-

ing calculations

4. Whether or not the specular color should be separated from

ambient and diffuse colors and applied after texturing.

All those properties can be set individually with the function

glLightModel*().

void glLightModel{if}(GLenum pname, TYPE param);

void glLightModel{if}v(GLenum pname, TYPE *param);

Again, pname specifies the property; param specifies the set of

parameters for the property pname.

In the following, GL_LIGHT_MODEL precedes the parameter name:

15

Parameter name Default Value Meaning

_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient intensity for

scene

_LOCAL_VIEWER 0.0 how specular reflec-

tion angles are calcu-

lated

_TWO_SIDE 0.0 one sides or two sided

lighting

_COLOR_CONTROL GL_SINGLE_COLOR whether specular

color is calculated

separately

Parameter name Default Value Meaning

_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient intensity for

scene

_LOCAL_VIEWER 0.0 how specular reflec-

tion angles are calcu-

lated

_TWO_SIDE 0.0 one sides or two sided

lighting

_COLOR_CONTROL GL_SINGLE_COLOR whether specular

color is calculated

separately

16

How a vertex’s color is calculated in OpenGL

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

color = emissionmaterial+

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

color = emissionmaterial+

ambientlight model ∗ ambientmaterial +

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

color = emissionmaterial+

ambientlight model ∗ ambientmaterial +∑n−1
i=0

(
1

kc+kld+kqd2

)
∗ (spotlight effect)i ∗

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

color = emissionmaterial+

ambientlight model ∗ ambientmaterial +∑n−1
i=0

(
1

kc+kld+kqd2

)
∗ (spotlight effect)i ∗

[ambientlight ∗ ambientmaterial +

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

color = emissionmaterial+

ambientlight model ∗ ambientmaterial +∑n−1
i=0

(
1

kc+kld+kqd2

)
∗ (spotlight effect)i ∗

[ambientlight ∗ ambientmaterial +

(max{Li · n, 0}) ∗ diffuselight ∗ diffusematerial +

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

color = emissionmaterial+

ambientlight model ∗ ambientmaterial +∑n−1
i=0

(
1

kc+kld+kqd2

)
∗ (spotlight effect)i ∗

[ambientlight ∗ ambientmaterial +

(max{Li · n, 0}) ∗ diffuselight ∗ diffusematerial +

specular effect]i

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

color = emissionmaterial+

ambientlight model ∗ ambientmaterial +∑n−1
i=0

(
1

kc+kld+kqd2

)
∗ (spotlight effect)i ∗

[ambientlight ∗ ambientmaterial +

(max{Li · n, 0}) ∗ diffuselight ∗ diffusematerial +

specular effect]i

where n = (nx,ny,nz) is the unit normal vector at the vertex

and L = (Lx,Ly,Lz) is the unit vector pointing from the vertex

to the light.

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

color = emissionmaterial+

ambientlight model ∗ ambientmaterial +∑n−1
i=0

(
1

kc+kld+kqd2

)
∗ (spotlight effect)i ∗

[ambientlight ∗ ambientmaterial +

(max{Li · n, 0}) ∗ diffuselight ∗ diffusematerial +

specular effect]i

where n = (nx,ny,nz) is the unit normal vector at the vertex

and L = (Lx,Ly,Lz) is the unit vector pointing from the vertex

to the light. Thus, the diffuse component is highest when n

and L are parallel.

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

color = emissionmaterial+

ambientlight model ∗ ambientmaterial +∑n−1
i=0

(
1

kc+kld+kqd2

)
∗ (spotlight effect)i ∗

[ambientlight ∗ ambientmaterial +

(max{Li · n, 0}) ∗ diffuselight ∗ diffusematerial +

specular effect]i

where n = (nx,ny,nz) is the unit normal vector at the vertex

and L = (Lx,Ly,Lz) is the unit vector pointing from the vertex

to the light. Thus, the diffuse component is highest when n

and L are parallel. The calculation for the specular effect is

similar but incorporates also the position of the viewpoint.

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

color = emissionmaterial+

ambientlight model ∗ ambientmaterial +∑n−1
i=0

(
1

kc+kld+kqd2

)
∗ (spotlight effect)i ∗

[ambientlight ∗ ambientmaterial +

(max{Li · n, 0}) ∗ diffuselight ∗ diffusematerial +

specular effect]i

where n = (nx,ny,nz) is the unit normal vector at the vertex

and L = (Lx,Ly,Lz) is the unit vector pointing from the vertex

to the light. Thus, the diffuse component is highest when n

and L are parallel. The calculation for the specular effect is

similar but incorporates also the position of the viewpoint.

The result is clamped to [0, 1].

How a vertex’s color is calculated in OpenGL

The color of a vertex under lighting in OpenGL is:

color = emission at the vertex +

global ambient light scaled by the ambient co-

efficient of the material +

the ambient, diffuse, and specular components

from all light sources, properly attenuated

The contribution from individual light sources is calculated as

follows:

color = emissionmaterial+

ambientlight model ∗ ambientmaterial +∑n−1
i=0

(
1

kc+kld+kqd2

)
∗ (spotlight effect)i ∗

[ambientlight ∗ ambientmaterial +

(max{Li · n, 0}) ∗ diffuselight ∗ diffusematerial +

specular effect]i

where n = (nx,ny,nz) is the unit normal vector at the vertex

and L = (Lx,Ly,Lz) is the unit vector pointing from the vertex

to the light. Thus, the diffuse component is highest when n

and L are parallel. The calculation for the specular effect is

similar but incorporates also the position of the viewpoint.

The result is clamped to [0, 1].

17

Shading — what happens between vertices

Shading — what happens between vertices

Clearly, the color and intensity of light at interior points in a

polygon could be calculated similarly.

Shading — what happens between vertices

Clearly, the color and intensity of light at interior points in a

polygon could be calculated similarly. However, this would be

computationally expensive, so other methods are used.

Shading — what happens between vertices

Clearly, the color and intensity of light at interior points in a

polygon could be calculated similarly. However, this would be

computationally expensive, so other methods are used.

As mentioned, OpenGL provides an interpolated shading model

known as Gouraud shading.

Shading — what happens between vertices

Clearly, the color and intensity of light at interior points in a

polygon could be calculated similarly. However, this would be

computationally expensive, so other methods are used.

As mentioned, OpenGL provides an interpolated shading model

known as Gouraud shading. Gouraud shading linearly interpo-

lates the color of an interior pixel from the color at the vertices.

Shading — what happens between vertices

Clearly, the color and intensity of light at interior points in a

polygon could be calculated similarly. However, this would be

computationally expensive, so other methods are used.

As mentioned, OpenGL provides an interpolated shading model

known as Gouraud shading. Gouraud shading linearly interpo-

lates the color of an interior pixel from the color at the vertices.

This interpolation is incorporated directly into the rasterization

algorithm.

Shading — what happens between vertices

Clearly, the color and intensity of light at interior points in a

polygon could be calculated similarly. However, this would be

computationally expensive, so other methods are used.

As mentioned, OpenGL provides an interpolated shading model

known as Gouraud shading. Gouraud shading linearly interpo-

lates the color of an interior pixel from the color at the vertices.

This interpolation is incorporated directly into the rasterization

algorithm.

Another common shading model is Phong shading.

Shading — what happens between vertices

Clearly, the color and intensity of light at interior points in a

polygon could be calculated similarly. However, this would be

computationally expensive, so other methods are used.

As mentioned, OpenGL provides an interpolated shading model

known as Gouraud shading. Gouraud shading linearly interpo-

lates the color of an interior pixel from the color at the vertices.

This interpolation is incorporated directly into the rasterization

algorithm.

Another common shading model is Phong shading. Instead

of interpolating over the intensity, Phong shading interpolates

over the normal vectors specified at the vertices.

Shading — what happens between vertices

Clearly, the color and intensity of light at interior points in a

polygon could be calculated similarly. However, this would be

computationally expensive, so other methods are used.

As mentioned, OpenGL provides an interpolated shading model

known as Gouraud shading. Gouraud shading linearly interpo-

lates the color of an interior pixel from the color at the vertices.

This interpolation is incorporated directly into the rasterization

algorithm.

Another common shading model is Phong shading. Instead

of interpolating over the intensity, Phong shading interpolates

over the normal vectors specified at the vertices. This gener-

ally produces a better specular component, because a better

approximation is used to the normal at each point.

Shading — what happens between vertices

Clearly, the color and intensity of light at interior points in a

polygon could be calculated similarly. However, this would be

computationally expensive, so other methods are used.

As mentioned, OpenGL provides an interpolated shading model

known as Gouraud shading. Gouraud shading linearly interpo-

lates the color of an interior pixel from the color at the vertices.

This interpolation is incorporated directly into the rasterization

algorithm.

Another common shading model is Phong shading. Instead

of interpolating over the intensity, Phong shading interpolates

over the normal vectors specified at the vertices. This gener-

ally produces a better specular component, because a better

approximation is used to the normal at each point. (Gouraud

shading tends to “average out” specular highlights.)

Shading — what happens between vertices

Clearly, the color and intensity of light at interior points in a

polygon could be calculated similarly. However, this would be

computationally expensive, so other methods are used.

As mentioned, OpenGL provides an interpolated shading model

known as Gouraud shading. Gouraud shading linearly interpo-

lates the color of an interior pixel from the color at the vertices.

This interpolation is incorporated directly into the rasterization

algorithm.

Another common shading model is Phong shading. Instead

of interpolating over the intensity, Phong shading interpolates

over the normal vectors specified at the vertices. This gener-

ally produces a better specular component, because a better

approximation is used to the normal at each point. (Gouraud

shading tends to “average out” specular highlights.)

This is computationally expensive, however, because the normal

vector must be both interpolated and normalized for each pixel.

Shading — what happens between vertices

Clearly, the color and intensity of light at interior points in a

polygon could be calculated similarly. However, this would be

computationally expensive, so other methods are used.

As mentioned, OpenGL provides an interpolated shading model

known as Gouraud shading. Gouraud shading linearly interpo-

lates the color of an interior pixel from the color at the vertices.

This interpolation is incorporated directly into the rasterization

algorithm.

Another common shading model is Phong shading. Instead

of interpolating over the intensity, Phong shading interpolates

over the normal vectors specified at the vertices. This gener-

ally produces a better specular component, because a better

approximation is used to the normal at each point. (Gouraud

shading tends to “average out” specular highlights.)

This is computationally expensive, however, because the normal

vector must be both interpolated and normalized for each pixel.

18

Specifying normal vectors

Specifying normal vectors

In the examples above the objects viewed were generated by

calls to glutSolidSphere and glutSolidTorus.

Specifying normal vectors

In the examples above the objects viewed were generated by

calls to glutSolidSphere and glutSolidTorus. These func-

tions generate the appropriate surface normals for these objects.

Specifying normal vectors

In the examples above the objects viewed were generated by

calls to glutSolidSphere and glutSolidTorus. These func-

tions generate the appropriate surface normals for these objects.

However, you often have to specify normal vectors yourself.

Specifying normal vectors

In the examples above the objects viewed were generated by

calls to glutSolidSphere and glutSolidTorus. These func-

tions generate the appropriate surface normals for these objects.

However, you often have to specify normal vectors yourself.

For proper lighting, these normal vectors must have unit length.

Specifying normal vectors

In the examples above the objects viewed were generated by

calls to glutSolidSphere and glutSolidTorus. These func-

tions generate the appropriate surface normals for these objects.

However, you often have to specify normal vectors yourself.

For proper lighting, these normal vectors must have unit length.

Even if you specify unit length normals, their lengths can be

changed by subsequent transformations (scaling and shearing).

Specifying normal vectors

In the examples above the objects viewed were generated by

calls to glutSolidSphere and glutSolidTorus. These func-

tions generate the appropriate surface normals for these objects.

However, you often have to specify normal vectors yourself.

For proper lighting, these normal vectors must have unit length.

Even if you specify unit length normals, their lengths can be

changed by subsequent transformations (scaling and shearing).

Therefore you may have to renormalize them.

Specifying normal vectors

In the examples above the objects viewed were generated by

calls to glutSolidSphere and glutSolidTorus. These func-

tions generate the appropriate surface normals for these objects.

However, you often have to specify normal vectors yourself.

For proper lighting, these normal vectors must have unit length.

Even if you specify unit length normals, their lengths can be

changed by subsequent transformations (scaling and shearing).

Therefore you may have to renormalize them. OpenGL can

do this for you automatically (at some computational expense).

Specifying normal vectors

In the examples above the objects viewed were generated by

calls to glutSolidSphere and glutSolidTorus. These func-

tions generate the appropriate surface normals for these objects.

However, you often have to specify normal vectors yourself.

For proper lighting, these normal vectors must have unit length.

Even if you specify unit length normals, their lengths can be

changed by subsequent transformations (scaling and shearing).

Therefore you may have to renormalize them. OpenGL can

do this for you automatically (at some computational expense).

To set this up call glEnablewith GL_NORMALIZE or GL_RESCALE_NORMAL

as a parameter (see red book for details).

Specifying normal vectors

In the examples above the objects viewed were generated by

calls to glutSolidSphere and glutSolidTorus. These func-

tions generate the appropriate surface normals for these objects.

However, you often have to specify normal vectors yourself.

For proper lighting, these normal vectors must have unit length.

Even if you specify unit length normals, their lengths can be

changed by subsequent transformations (scaling and shearing).

Therefore you may have to renormalize them. OpenGL can

do this for you automatically (at some computational expense).

To set this up call glEnablewith GL_NORMALIZE or GL_RESCALE_NORMAL

as a parameter (see red book for details).

The function glNormal*(x,y,z) sets the normal vector for a

vertex.

Specifying normal vectors

In the examples above the objects viewed were generated by

calls to glutSolidSphere and glutSolidTorus. These func-

tions generate the appropriate surface normals for these objects.

However, you often have to specify normal vectors yourself.

For proper lighting, these normal vectors must have unit length.

Even if you specify unit length normals, their lengths can be

changed by subsequent transformations (scaling and shearing).

Therefore you may have to renormalize them. OpenGL can

do this for you automatically (at some computational expense).

To set this up call glEnablewith GL_NORMALIZE or GL_RESCALE_NORMAL

as a parameter (see red book for details).

The function glNormal*(x,y,z) sets the normal vector for a

vertex.

19

Example: tent.c

Example: tent.c

The program tent.c shows a ‘tent’ composed of two polygons.

Example: tent.c

The program tent.c shows a ‘tent’ composed of two polygons.

Initially, the normal vectors are specified as follows:

Example: tent.c

The program tent.c shows a ‘tent’ composed of two polygons.

Initially, the normal vectors are specified as follows:

Light 0

y

x

z

Example: tent.c

The program tent.c shows a ‘tent’ composed of two polygons.

Initially, the normal vectors are specified as follows:

Light 0

y

x

z

The diffuse light source illuminates the right polygon much more

than the left, and the transition in illumination is abrupt.

20

A more gentle transition in illumination can be enabled by spec-

ifying normal vectors as follows:

A more gentle transition in illumination can be enabled by spec-

ifying normal vectors as follows:

Light 0

y

x

z

A more gentle transition in illumination can be enabled by spec-

ifying normal vectors as follows:

Light 0

y

x

z

These two modes can be toggled by pressing ‘t’.

A more gentle transition in illumination can be enabled by spec-

ifying normal vectors as follows:

Light 0

y

x

z

These two modes can be toggled by pressing ‘t’. Additionally,

a white specular component can be added to the light source

by pressing ‘s’.

A more gentle transition in illumination can be enabled by spec-

ifying normal vectors as follows:

Light 0

y

x

z

These two modes can be toggled by pressing ‘t’. Additionally,

a white specular component can be added to the light source

by pressing ‘s’.

The following is the most relevant code from tent.c...

21

void display(void) {

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 1);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 1);

glVertex3f(1, 1, 0);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 1);

glVertex3f(1, 1, 0);

/* Right side. */

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 1);

glVertex3f(1, 1, 0);

/* Right side. */

glNormal3f(l, l, 0);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 1);

glVertex3f(1, 1, 0);

/* Right side. */

glNormal3f(l, l, 0);

glVertex3f(2, 0, 1);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 1);

glVertex3f(1, 1, 0);

/* Right side. */

glNormal3f(l, l, 0);

glVertex3f(2, 0, 1);

glVertex3f(2, 0, 0);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 1);

glVertex3f(1, 1, 0);

/* Right side. */

glNormal3f(l, l, 0);

glVertex3f(2, 0, 1);

glVertex3f(2, 0, 0);

if (topUp) glNormal3f(0, 1, 0);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 1);

glVertex3f(1, 1, 0);

/* Right side. */

glNormal3f(l, l, 0);

glVertex3f(2, 0, 1);

glVertex3f(2, 0, 0);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 0);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 1);

glVertex3f(1, 1, 0);

/* Right side. */

glNormal3f(l, l, 0);

glVertex3f(2, 0, 1);

glVertex3f(2, 0, 0);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 0);

glVertex3f(1, 1, 1);

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 1);

glVertex3f(1, 1, 0);

/* Right side. */

glNormal3f(l, l, 0);

glVertex3f(2, 0, 1);

glVertex3f(2, 0, 0);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 0);

glVertex3f(1, 1, 1);

glEnd();

void display(void) {

.

.

.

/* We require unit length normal vectors. For a vector with 2 non-zero

* elements of equal magnitude, the magnitude of both elements should be equal

* to 1 / sqrt(2) = 0.7071 for the vector to be of unit length. */

double l = 0.7071;

/* Set up the light in a position perpendicular to the right polygon. */

GLfloat light_position[] = { 3.0, 2.0, 0.0, 1.0 };

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

.

.

.

/* Draw the tent. */

glBegin(GL_QUADS);

/* Left side. */

glNormal3f(-l, l, 0);

glVertex3f(0, 0, 0);

glVertex3f(0, 0, 1);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 1);

glVertex3f(1, 1, 0);

/* Right side. */

glNormal3f(l, l, 0);

glVertex3f(2, 0, 1);

glVertex3f(2, 0, 0);

if (topUp) glNormal3f(0, 1, 0);

glVertex3f(1, 1, 0);

glVertex3f(1, 1, 1);

glEnd();

.

.

.

}

22

void init (void)

{

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

/* Set up material properties. */

GLfloat mat_ambient[] = { 1.0, 0.0, 0.0, 1.0 };

GLfloat mat_diffuse[] = { 0.0, 1.0, 0.0, 1.0 };

glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);

glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);

glMaterialf(GL_FRONT, GL_SHININESS, 50.0); /* No effect if specular == 0 */

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glEnable(GL_DEPTH_TEST);

}

23

void key(unsigned char k, int x, int y)

{

switch (k) {

case 27: /* Escape */

exit(0);

break;

case ’s’:

specular = !specular;

if (specular) {

GLfloat mat_specular[] = { 0.0, 0.0, 1.0, 1.0 };

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

} else {

GLfloat mat_specular[] = { 0.0, 0.0, 0.0, 1.0 };

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

}

break;

case ’t’:

topUp = !topUp;

break;

default:

return;

}

glutPostRedisplay();

}

24

