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Parameter name Default Value Meaning
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GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-
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GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0



Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.



Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR



Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.



Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.

The default values for GL_DIFFUSE and GL_SPECULAR are for

GL_LIGHT0 only.



Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.

The default values for GL_DIFFUSE and GL_SPECULAR are for

GL_LIGHT0 only. Other lights default to black (0.0, 0.0, 0.0, 1.0).



Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.

The default values for GL_DIFFUSE and GL_SPECULAR are for

GL_LIGHT0 only. Other lights default to black (0.0, 0.0, 0.0, 1.0).

Light position: GL_POSITION



Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.

The default values for GL_DIFFUSE and GL_SPECULAR are for

GL_LIGHT0 only. Other lights default to black (0.0, 0.0, 0.0, 1.0).

Light position: GL_POSITION

The fourth value specified for GL_POSITION controls whether

the light is directional or positional.



Parameter name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient color

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse color

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular color

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w): po-

sition or direc-

tion

GL_CONSTANT_ATTENUATION 1.0 see equation

following

GL_LINEAR_ATTENUATION 0.0

GL_QUADRATIC_ATTENUATION 0.0

There are also other parameters which restrict a light to be a

spotlight.

Light color: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR

These four-dimensional quantities specify the colors of the am-

bient, diffuse, and specular light emitted from a light source.

The default values for GL_DIFFUSE and GL_SPECULAR are for

GL_LIGHT0 only. Other lights default to black (0.0, 0.0, 0.0, 1.0).

Light position: GL_POSITION

The fourth value specified for GL_POSITION controls whether

the light is directional or positional. A directional light is in-

finitely far away, such that the rays of light it emanates are

7



parallel (e.g. like the rays of light from the sun striking a small

area on Earth).



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional.



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance.



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance. That is, it attenuates.



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance. That is, it attenuates.

The attenuation is calculated from the expression



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance. That is, it attenuates.

The attenuation is calculated from the expression

attenuation factor =
1

kc + kld + kqd2



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance. That is, it attenuates.

The attenuation is calculated from the expression

attenuation factor =
1

kc + kld + kqd2

where d is the distance from the light source, and kc, kl, and kq

are the constant, linear, and quadratic attenuation terms.



parallel (e.g. like the rays of light from the sun striking a small

area on Earth). If the w value is zero, the light is considered

directional and the (x, y, z) values describe the direction of the

light.

If the w−value is non-zero the light is positional. The (x, y, z)

values specify the location of the light which radiates in all

directions.

The direction of a directional light and the position of a posi-

tional light are both transformed by the MODELVIEW matrix.

The PROJECTION matrix has no effect on a light source.

The tutorial lightposition shows a simple use of lighting and

the interaction with viewing position.

Light attenuation: GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,

GL_QUADRATIC_ATTENUATION

As mentioned, light has the property that it reduces in intensity

with distance. That is, it attenuates.

The attenuation is calculated from the expression

attenuation factor =
1

kc + kld + kqd2

where d is the distance from the light source, and kc, kl, and kq

are the constant, linear, and quadratic attenuation terms.

8



First example



First example

The following simple program light.c shows a lighted sphere:



First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{



First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat mat_shininess[] = { 50.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

GLfloat white_light_[] = { 1.0, 1.0, 1.0, 0.0 };



First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat mat_shininess[] = { 50.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

GLfloat white_light_[] = { 1.0, 1.0, 1.0, 0.0 };

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);



First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat mat_shininess[] = { 50.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

GLfloat white_light_[] = { 1.0, 1.0, 1.0, 0.0 };

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);



First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat mat_shininess[] = { 50.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

GLfloat white_light_[] = { 1.0, 1.0, 1.0, 0.0 };

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glLightfv(GL_LIGHT0, GL_DIFFUSE, white_light);

glLightfv(GL_LIGHT0, GL_SPECULAR, white_light);



First example

The following simple program light.c shows a lighted sphere:

/* Initialize material property, light source,

* lighting model, and depth buffer. */

void init(void)

{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat mat_shininess[] = { 50.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

GLfloat white_light_[] = { 1.0, 1.0, 1.0, 0.0 };

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glLightfv(GL_LIGHT0, GL_DIFFUSE, white_light);

glLightfv(GL_LIGHT0, GL_SPECULAR, white_light);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glEnable(GL_DEPTH_TEST);

}

9



void display(void)

{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glutSolidSphere (1.0, 20, 16);

glFlush ();

}



void display(void)

{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glutSolidSphere (1.0, 20, 16);

glFlush ();

}

Second example



void display(void)

{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glutSolidSphere (1.0, 20, 16);

glFlush ();

}

Second example

This example, movelight.c, illustrates how the position of a

light is transformed by the MODELVIEW matrix:



void display(void)

{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glutSolidSphere (1.0, 20, 16);

glFlush ();

}

Second example

This example, movelight.c, illustrates how the position of a

light is transformed by the MODELVIEW matrix:

void init(void)

{

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glEnable(GL_DEPTH_TEST);

}



void display(void)

{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glutSolidSphere (1.0, 20, 16);

glFlush ();

}

Second example

This example, movelight.c, illustrates how the position of a

light is transformed by the MODELVIEW matrix:

void init(void)

{

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glEnable(GL_DEPTH_TEST);

}

10



void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };



void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();



void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);



void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);

glDisable (GL_LIGHTING); /* Draw an unlit wire cube at */

glColor3f (0.0, 1.0, 1.0); /* the position of the light. */

glutWireCube (0.1);

glEnable (GL_LIGHTING);

glPopMatrix ();



void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);

glDisable (GL_LIGHTING); /* Draw an unlit wire cube at */

glColor3f (0.0, 1.0, 1.0); /* the position of the light. */

glutWireCube (0.1);

glEnable (GL_LIGHTING);

glPopMatrix ();



void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);

glDisable (GL_LIGHTING); /* Draw an unlit wire cube at */

glColor3f (0.0, 1.0, 1.0); /* the position of the light. */

glutWireCube (0.1);

glEnable (GL_LIGHTING);

glPopMatrix ();

glutSolidTorus (0.275, 0.85, 8, 15);



void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);

glDisable (GL_LIGHTING); /* Draw an unlit wire cube at */

glColor3f (0.0, 1.0, 1.0); /* the position of the light. */

glutWireCube (0.1);

glEnable (GL_LIGHTING);

glPopMatrix ();

glutSolidTorus (0.275, 0.85, 8, 15);

glPopMatrix ();

glFlush ();

}



void display(void)

{

GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glPushMatrix ();

glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);

glLightfv (GL_LIGHT0, GL_POSITION, position);

glTranslated (0.0, 0.0, 1.5);

glDisable (GL_LIGHTING); /* Draw an unlit wire cube at */

glColor3f (0.0, 1.0, 1.0); /* the position of the light. */

glutWireCube (0.1);

glEnable (GL_LIGHTING);

glPopMatrix ();

glutSolidTorus (0.275, 0.85, 8, 15);

glPopMatrix ();

glFlush ();

}

11



void reshape (int w, int h)

{

glViewport (0, 0, (GLsizei) w, (GLsizei) h);

glMatrixMode (GL_PROJECTION);

glLoadIdentity();

gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

}



void reshape (int w, int h)

{

glViewport (0, 0, (GLsizei) w, (GLsizei) h);

glMatrixMode (GL_PROJECTION);

glLoadIdentity();

gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

}

void mouse(int button, int state, int x, int y) {

switch (button) {

case GLUT_LEFT_BUTTON:

if (state == GLUT_DOWN) {

spin = (spin + 30) % 360;

glutPostRedisplay();

}

break;

default:

break;

}

}
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void keyboard(unsigned char key, int x, int y) {

switch (key) {
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void keyboard(unsigned char key, int x, int y) {

switch (key) {

case 27:

exit(0);

break;

}

}

int main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowSize (500, 500);

glutInitWindowPosition (100, 100);

glutCreateWindow (argv[0]);

init ();

glutDisplayFunc(display);

glutReshapeFunc(reshape);

glutMouseFunc(mouse);

glutKeyboardFunc(keyboard);

glutMainLoop();

return 0;

}
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Example: tent.c

The program tent.c shows a ‘tent’ composed of two polygons.

Initially, the normal vectors are specified as follows:

Light 0

y

x

z

The diffuse light source illuminates the right polygon much more

than the left, and the transition in illumination is abrupt.
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A more gentle transition in illumination can be enabled by spec-

ifying normal vectors as follows:

Light 0

y

x

z

These two modes can be toggled by pressing ‘t’. Additionally,

a white specular component can be added to the light source

by pressing ‘s’.

The following is the most relevant code from tent.c...
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void init (void)

{

glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

/* Set up material properties. */

GLfloat mat_ambient[] = { 1.0, 0.0, 0.0, 1.0 };

GLfloat mat_diffuse[] = { 0.0, 1.0, 0.0, 1.0 };

glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);

glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);

glMaterialf(GL_FRONT, GL_SHININESS, 50.0 ); /* No effect if specular == 0 */

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glEnable(GL_DEPTH_TEST);

}
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void key( unsigned char k, int x, int y )

{

switch (k) {

case 27: /* Escape */

exit(0);

break;

case ’s’:

specular = !specular;

if ( specular ) {

GLfloat mat_specular[] = { 0.0, 0.0, 1.0, 1.0 };

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

} else {

GLfloat mat_specular[] = { 0.0, 0.0, 0.0, 1.0 };

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

}

break;

case ’t’:

topUp = !topUp;

break;

default:

return;

}

glutPostRedisplay();

}
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