
3.3 The Wave Nature of Light

Much of the history of physics is concerned with the evolution of our ideas
about the nature of light. The speed of light was first measured with some
accuracy in 1675, by the Danish astronomer Ole Roemer (1644-1710). Roemer
observed the moons of Jupiter as they passed into the giant planet's shadow, and
he was able to calculate when future eclipses of the moons should occur by using
Kepler's laws. However, Roemer discovered that when Earth was moving closer
to Jupiter, the eclipses occurred earlier than expected. Similarly, when Earth was
moving away from Jupiter, the eclipses occurred behind schedule. Roemer
realized that the discrepancy was caused by the differing amounts of time it took
for light to travel the changing distance between the two planets, and he
concluded that 22 minutes was required for light to cross the diameter of Earth's
orbit.6 The resulting value of 2.2 x 1010 cm s-1 was close to the modern value of
the speed of light. In 1983 the speed of light in vacuo was recognized as a
fundamental constant of nature whose value is, by definition, c = 2.99792458 x
1010 cm s-1.

Even the fundamental nature of light has long been debated. Isaac Newton, for
example, believed that light must consist of a rectilinear stream of particles,
because only such a stream could account for the sharpness of shadows. Christian
Huygens (1629-1695), a contemporary of Newton, advanced the idea that light
must consist of waves. According to Huygens, light is described by the usual
quantities appropriate for a wave. The distance between two successive wave
crests is the wavelength λ, and the number of waves per second that a point in
space is the frequency ν of the wave. Then the speed of the light wave is given
by

c = λν. (3. 10)

Both the particle and wave models could explain the familiar phenomena of the
reflection and refraction of light. However, the particle model of light prevailed,
primarily on the strength of Newton's reputation, until its wave nature was
conclusively demonstrated by Thomas Young's (1773-1829) famous double-slit
experiment.
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In a double-slit experiment, monochromatic light of wavelength λ from a single
source passes through two narrow, parallel slits that are separated by a distance d.
The light then falls upon a screen a distance L beyond the two slits (see Fig. 3.3).
The series of light and dark interference fringes that Young observed on the
screen could be explained only by a wave model of light. As the light waves pass
through the narrow slits, they spread out (diffract) radially in a succession of
crests and troughs. Light obeys a superposition principle, so when two waves
meet, they add algebraically; see Fig. 3.4. At the screen, if a wave crest from one
slit meets a wave crest from the other slit, a bright fringe or maximum is produced
by the resulting constructive interference. But if a wave crest from one slit
meets a wave trough from the other slit, they cancel each other, and a dark fringe
or minimum results from this destructive interference.
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The interference pattern observed thus depends on the difference in the lengths
of the paths traveled by the light waves from the two slits to the screen. As shown
in Fig. 3.3, if L ~ d, then to a good approximation this path difference is dsinθ.
The light waves will arrive at the screen in phase if the path difference is equal to
an integral number of wavelengths. On the other hand, the light waves will arrive
180° out of phase if the path difference is equal to an odd integral number of
half-wavelengths. So for L ~ d, the angular positions of the bright and dark fringes
for double-slit interference are given by

dsinθ   = nλ (n = 0, 1, 2, for bright fringes) (3.11)

(n-1/2)λ .......................(n = 1, 2, 3,               for dark fringes).

In either case, n is called the order of the maximum or minimum. From the
measured positions of the light and dark fringes on the screen, Young was able to
determine the wavelength of the light. Measured in units of angstroms,
abbreviated A, Young obtained a wavelength of 4000 A for violet light, and 7000
A for red light. The diffraction of light goes unnoticed under everyday conditions
for these short wavelengths, thus explaining Newton's sharp shadows.



The nature of these waves of light remained elusive until the early 1860s,
when the Scottish mathematical physicist James Clerk Maxwell (1831-1879)
succeeded in condensing everything known about electric and magnetic fields into
the four equations that today bear his name. Maxwell found that his equations
could be manipulated to produce wave equations for the electric and magnetic
field vectors E and B. These wave equations predicted the existence of
electromagnetic waves that travel through a vacuum with a speed

v = 1/ εµ . Upon inserting the values of ε and µ, Maxwell was amazed to

discover that electromagnetic waves travel at the speed of light. Furthermore,
these equations implied that electromagnetic waves are transverse waves, with the
oscillatory electric and magnetic fields perpendicular to each other and to the
direction of the wave's propagation (see Fig. 3.5); such waves could exhibit the
polarization known to occur for light. Maxwell wrote that "we can scarcely avoid
the inference that light consists in the transverse modulations of the same medium
which is the cause of electric and magnetic phenomena."
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Maxwell did not live to see the experimental verification of his prediction of
electromagnetic waves. Ten years after Maxwell's death, the German physicist
Heinrich Hertz (1857-1894) succeeded in producing radio waves in his laboratory.
Hertz determined that these electromagnetic waves do indeed travel at the speed
of light, and he confirmed their reflection, refraction, and polarization properties.
In 1889, Hertz wrote:

What is light? Since the time of Young and Fresnel we know that it is wave
motion. We know the velocity of the waves, we know their lengths, and we know
that they are transverse; in short, our knowledge of the geometrical conditions of
the motion is complete. A doubt about these things is no longer possible; a
refutation of these views is inconceivable to the physicist. The wave theory of
light is, from the point of view of human beings, certainty.



Region Wavelength

Gamma ray λ < 0.1 A
X-ray 0.1A<  λ < 100A
Ultraviolet 100 A <  λ < 4000 A
Visible 4000A <  λ < 7000 A
Infrared 7000 A < λ < 1 mm
Microwave 1 mm < λ < 10 cm
Radio 10 cm < λ

Table 3.1 The Electromagnetic Spectrum.

Today, astronomers utilize light from every part of the electromagnetic
spectrum. The total spectrum of light consists of electromagnetic waves of all
wavelengths, ranging from very short wavelength gamma rays to very long
wavelength radio waves. Table 3.1 shows how the electromagnetic spectrum has
been arbitrarily divided into various wavelength regions.

Like all waves, electromagnetic waves carry both energy and momentum in
the direction of propagation. The amount of energy carried by a light wave is
described by the Poynting vector, S. The Poynting vector points in the direction
of the electromagnetic wave's propagation and has a magnitude equal to the
amount of energy per unit time that crosses a unit area oriented perpendicular to
the direction of the propagation of the wave. Because the magnitudes of the fields
E and B vary harmonically with time, the quantity of practical interest is the
time-averaged value of the Poynting vector over one cycle of the electromagnetic
wave. In a vacuum the magnitude of the timeaveraged Poynting vector, (S), is

S
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 (cgs units: ergs/cm2/sec)

where E and B are the maximum magnitudes (amplitudes) of the electric  and
magnetic fields. The time-averaged Poynting vector thus provides a description of
the radiant flux in terms of the electric and magnetic fields of the light waves.
However, it should be remembered that the radiant flux discussed in Section 3.2
involves the amount of energy received at all wavelengths from a star, whereas E
and B describe an electromagnetic wave of a specified wavelength.

Because an electromagnetic wave carries momentum, it can exert a force on a
surface hit by the light. The resulting radiation pressure depends on whether the
light is reflected from or absorbed by the surface. If the light is completely
absorbed, then the force due to radiation pressure is in the direction of the light's
propagation and has magnitude
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= cosθ            (absorption)      (3.13)

where θ is the angle of incidence of the light as measured from the direction
perpendicular to the surface of area A (see Fig. 3.6). Alternatively, if the light is
completely reflected, then the radiation pressure force must act in a direction
perpendicular to the surface; the reflected light cannot exert a force parallel to the
surface. Then the magnitude of the force is
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cosθ              (reflection)     (3.14)

Radiation pressure has a negligible effect on physical systems under everyday
conditions. However, radiation pressure may play a dominant role in determining
some aspects of the behavior of extremely luminous objects such as early
main-sequence stars, red supergiants, or accreting compact stars. It may also have
a signficant effect on the small particles of dust found throughout the interstellar
medium.
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